Advertisements
Advertisements
प्रश्न
विकल्प
loge 3
- \[\log_e \sqrt{3}\]
- \[\frac{1}{2}\log\left( - 1 \right)\]
log (−1)
उत्तर
\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{\sin2x} d x\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \ cosec2x\ dx\]
\[ = \frac{1}{2} \int_\frac{\pi}{6}^\frac{\pi}{3} 2\ cosec2x\ dx\]
\[ = \frac{- 1}{2} \left[ \log\left( \ cosec\ 2x\ + \cot2x \right) \right]_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \frac{- 1}{2}\left[ - 2\log\sqrt{3} \right]\]
\[ = \log\sqrt{3}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Γ(1) is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
`int x^3/(x + 1)` is equal to ______.