Advertisements
Advertisements
प्रश्न
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
उत्तर
Put x – α = t2.
Then β – x = β – (t2 +α)
= β – t2 – α
= – t2 – α + β
And dx = 2tdt.
Now I = `int (2"t dt")/sqrt("t"^2(beta - alpha - "t"^2))`
= `int (2"dt")/sqrt((beta - alpha - "t"^2))`
= `2 "dt"/sqrt("k"^2 - "t"^2)`, where k2 = β – α
= `2sin^-1 "t"/"k" + "C"`
= `2sin^-1 sqrt((x - alpha)/(beta - alpha)) + "C"`
APPEARS IN
संबंधित प्रश्न
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.