Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_\frac{\pi}{6}^\frac{\pi}{4} cosec x d x . Then, \]
\[I = \int_\frac{\pi}{6}^\frac{\pi}{4} cosec\ x \frac{cosec\ x - \cot x}{cosec x - \cot x} d x\]
\[ \Rightarrow I = \int_\frac{\pi}{6}^\frac{\pi}{4} \frac{{cosec}^2\ x - cosec\ x \cot x}{cosec\ x\ - \cot x} d x\]
\[ \Rightarrow I = \left[ \log \left( cosec\ x - \cot x \right) \right]_\frac{\pi}{6}^\frac{\pi}{4} \]
\[ \Rightarrow I = \log \left( \sqrt{2} - 1 \right) - \log\left( 2 - \sqrt{3} \right)\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`