Advertisements
Advertisements
प्रश्न
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
उत्तर
\[Let I = \int_1^5 \frac{x}{\sqrt{2x - 1}} d x\]
\[Let, 2x - 1 = t,\text{ then }2dx = dt, \]
\[\text{When, }x \to 1 ; t \to 1\text{ and x to 5; } t \to 9\]
\[x = \frac{t + 1}{2}\]
\[I = \frac{1}{2} \int_1^9 \frac{t + 1}{\sqrt{t}} \times \frac{dt}{2}\]
\[ = \frac{1}{4} \left[ \frac{2 t^\frac{3}{2}}{3} + 2\sqrt{t} \right]_1^9 \]
\[ = \frac{1}{4}\left[ 18 + 6 - \frac{2}{3} - 2 \right]\]
\[ = \frac{16}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Find : `∫_a^b logx/x` dx
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`