हिंदी

4 ∫ 1 X 2 + X √ 2 X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

उत्तर

\[Let\ I = \int_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} d x . \]
\[Let\ 2x + 1 = u\]
\[ \Rightarrow x = \frac{u - 1}{2}\]
\[ \Rightarrow dx = \frac{du}{2}\]
\[ \therefore I = \int\frac{\left( \frac{u - 1}{2} \right)^2 + \frac{u - 1}{2}}{\sqrt{u}} \frac{du}{2}\]
\[ \Rightarrow I = \frac{1}{8}\int\frac{u^2 + 1 - 2u + 2u - 2}{\sqrt{u}} du\]
\[ = \frac{1}{8}\int\frac{\left( u^2 - 1 \right)}{\sqrt{u}} du\]
\[ = \frac{1}{8}\int\left( u^\frac{3}{2} - u^{- \frac{1}{2}} \right) du\]
\[ = \frac{1}{8}\left[ \frac{2 u^\frac{5}{2}}{5} - \frac{2 u^\frac{1}{2}}{1} \right]\]
\[ = \frac{1}{8} \left[ \frac{2 \left( 2x + 1 \right)^\frac{5}{2}}{5} - \frac{2 \left( 2x + 1 \right)^\frac{1}{2}}{1} \right]_1^4 \]
\[ = \frac{1}{8}\left[ \frac{2}{5} \times 243 - 6 - \frac{2}{5} \times 9\sqrt{3} + 2\sqrt{3} \right]\]
\[ \Rightarrow I = \frac{1}{8}\left[ \frac{456}{5} - \frac{8\sqrt{3}}{5} \right]\]
\[ \Rightarrow I = \frac{57 - \sqrt{3}}{5}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 45 | पृष्ठ १७

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_0^2 2x\left[ x \right]dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^\pi x \sin^3 x\ dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_a^b e^x dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_1^e \log x\ dx =\]

\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^4 x dx\]


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×