Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} d x . \]
\[Let\ 2x + 1 = u\]
\[ \Rightarrow x = \frac{u - 1}{2}\]
\[ \Rightarrow dx = \frac{du}{2}\]
\[ \therefore I = \int\frac{\left( \frac{u - 1}{2} \right)^2 + \frac{u - 1}{2}}{\sqrt{u}} \frac{du}{2}\]
\[ \Rightarrow I = \frac{1}{8}\int\frac{u^2 + 1 - 2u + 2u - 2}{\sqrt{u}} du\]
\[ = \frac{1}{8}\int\frac{\left( u^2 - 1 \right)}{\sqrt{u}} du\]
\[ = \frac{1}{8}\int\left( u^\frac{3}{2} - u^{- \frac{1}{2}} \right) du\]
\[ = \frac{1}{8}\left[ \frac{2 u^\frac{5}{2}}{5} - \frac{2 u^\frac{1}{2}}{1} \right]\]
\[ = \frac{1}{8} \left[ \frac{2 \left( 2x + 1 \right)^\frac{5}{2}}{5} - \frac{2 \left( 2x + 1 \right)^\frac{1}{2}}{1} \right]_1^4 \]
\[ = \frac{1}{8}\left[ \frac{2}{5} \times 243 - 6 - \frac{2}{5} \times 9\sqrt{3} + 2\sqrt{3} \right]\]
\[ \Rightarrow I = \frac{1}{8}\left[ \frac{456}{5} - \frac{8\sqrt{3}}{5} \right]\]
\[ \Rightarrow I = \frac{57 - \sqrt{3}}{5}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^4 x dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.