हिंदी

1 ∫ − 1 1 X 2 + 2 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

उत्तर

\[Let\ I = \int_{- 1}^1 \frac{1}{x^2 + 2x + 5} d x . Then, \]
\[ I = \int_{- 1}^1 \frac{1}{\left( x^2 + 2x + 1 \right) + 4} d x\]
\[ \Rightarrow I = \int_{- 1}^1 \frac{1}{\left( x + 1 \right)^2 + 2^2} d x\]
\[ \Rightarrow I = \frac{1}{2} \left[ \tan^{- 1} \frac{\left( x + 1 \right)}{2} \right]_{- 1}^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( \tan^{- 1} 1 - \tan^{- 1} 0 \right)\]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{\pi}{4} \right)\]
\[ \Rightarrow I = \frac{\pi}{8}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 44 | पृष्ठ १७

संबंधित प्रश्न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


`int_0^(2a)f(x)dx`


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×