Advertisements
Advertisements
प्रश्न
`int_0^(2a)f(x)dx`
उत्तर
We have.
`I=int_0^(2a)f(x)dx`
Then,
`I=int_0^af(x)dx+int_a^(2a)f(x)dx`
`I=int_0^af(x)dx+I_1 ......................["where, "I_1=int_a^(2a)f(x)dx]`
Let 2a - t = x then dx = - dt
If t = a ⇒ x = a
If t = 2a ⇒ x = 0
`I_1=int_0^(2a)f(x)dx=int_a^0f(2a-t)(-dt)=-int_a^0f(2a-t)dt`
`I_1=int_0^af(2a-t)dt=int_0^af(2a-x)dx`
`thereforeI=int_0^af(x)dx+int_0^af(2a-x)dx`
`I=int_0^af(x)dx+int_0^af(x)dx=2int_0^af(x)dx............................[f(2a-x=f(x))]`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.