हिंदी

2 ∫ 1 Log E [ X ] D X . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\limits_1^2 \log_e \left[ x \right] dx\]
\[\text{We know that}, \]
\[\left[ x \right] = 1\text{, when }1 < x < 2\]
\[ \therefore I = \int\limits_1^2 \log_e 1 dx\]
\[I = \int\limits_1^2 \left( 0 \right) dx\]
\[ = 0\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Very Short Answers [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Very Short Answers | Q 43 | पृष्ठ ११६

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

If n > 0, then Γ(n) is


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×