Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\limits_1^2 \log_e \left[ x \right] dx\]
\[\text{We know that}, \]
\[\left[ x \right] = 1\text{, when }1 < x < 2\]
\[ \therefore I = \int\limits_1^2 \log_e 1 dx\]
\[I = \int\limits_1^2 \left( 0 \right) dx\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Solve each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.