Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_4^{12} x \left( x - 4 \right)^\frac{1}{3} d x . \]
\[Let\ x - 4 = t . Then, dx = dt\]
\[When\ x = 4, t = 0\ and\ x\ = 12, t = 8\]
\[ \therefore I = \int_0^8 \left( t + 4 \right) t^\frac{1}{3} dt\]
\[ \Rightarrow I = \int_0^8 \left( t^\frac{4}{3} + 4 t^\frac{1}{3} \right) dt\]
\[ \Rightarrow I = \left[ \frac{3}{7} t^\frac{7}{3} + \frac{3}{1} t^\frac{4}{3} \right]_0^8 \]
\[ \Rightarrow I = \frac{384}{7} + 48\]
\[ \Rightarrow I = \frac{720}{7}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.