English

12 ∫ 4 X ( X − 4 ) 1 / 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

Solution

\[Let\ I = \int_4^{12} x \left( x - 4 \right)^\frac{1}{3} d x . \]
\[Let\ x - 4 = t . Then, dx = dt\]
\[When\ x = 4, t = 0\ and\ x\ = 12, t = 8\]
\[ \therefore I = \int_0^8 \left( t + 4 \right) t^\frac{1}{3} dt\]
\[ \Rightarrow I = \int_0^8 \left( t^\frac{4}{3} + 4 t^\frac{1}{3} \right) dt\]
\[ \Rightarrow I = \left[ \frac{3}{7} t^\frac{7}{3} + \frac{3}{1} t^\frac{4}{3} \right]_0^8 \]
\[ \Rightarrow I = \frac{384}{7} + 48\]
\[ \Rightarrow I = \frac{720}{7}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 35 | Page 39

RELATED QUESTIONS

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×