English

Ed∫ex(1-x1+x2)2 dx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.

Options

  • `"e"^x/(1 + x^2) + "C"`

  • `(-"e"^x)/(1 + x^2) + "C"`

  • `"e"^x/(1 + x^2)^2 + "C"`

  • `(-"e"^x)/(1 + x^2)^2 + "C"`

MCQ
Fill in the Blanks

Solution

`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to `"e"^x/(1 + x^2) + "C"`.

Explanation:

Let I = `int "e"^x ((1 - x)/(1 + x^2))^2  "d"x`

= `int "e"^x [(1 + x^2 - 2x)/(1 + x^2)^2]"d"x`

= `int "e"^x [((1 + x^2))/(1 + x^2)^2 - (2x)/(1 + x^2)^2]"d"x`

= `int "e"^x [1/(1 + x^2) - (2x)/(1 + x^2)^2]"d"x`

Here f(x) = `1/(1 + x^2)`

∴ f'(x) = `(-2x)/(1 + x^2)^2`

Using `int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x * "f"(x) + "C"`

∴ I = `"e"^x * 1/(1 + x^2) + "C" = "e"^x/(1 + x^2) + "C"`

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 167]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 51 | Page 167

RELATED QUESTIONS

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×