Advertisements
Advertisements
Question
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
Options
`"e"^x/(1 + x^2) + "C"`
`(-"e"^x)/(1 + x^2) + "C"`
`"e"^x/(1 + x^2)^2 + "C"`
`(-"e"^x)/(1 + x^2)^2 + "C"`
Solution
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to `"e"^x/(1 + x^2) + "C"`.
Explanation:
Let I = `int "e"^x ((1 - x)/(1 + x^2))^2 "d"x`
= `int "e"^x [(1 + x^2 - 2x)/(1 + x^2)^2]"d"x`
= `int "e"^x [((1 + x^2))/(1 + x^2)^2 - (2x)/(1 + x^2)^2]"d"x`
= `int "e"^x [1/(1 + x^2) - (2x)/(1 + x^2)^2]"d"x`
Here f(x) = `1/(1 + x^2)`
∴ f'(x) = `(-2x)/(1 + x^2)^2`
Using `int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x * "f"(x) + "C"`
∴ I = `"e"^x * 1/(1 + x^2) + "C" = "e"^x/(1 + x^2) + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`