Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \cos^3 x\ d\ x . Then, \]
\[I = \int_0^\frac{\pi}{2} \cos^2 x \cos\ x\ d\ x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( 1 - \sin^2 x \right) \cos x d x\]
\[Let u = \sin x, du = \cos\ x\ dx\]
\[ \Rightarrow I = \int\left( 1 - u^2 \right) du\]
\[ \Rightarrow I = \left[ u - \frac{u^3}{3} \right]\]
\[ \Rightarrow I = \left[ \sin x - \frac{\sin^3 x}{3} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 1 - \frac{1}{3} - 0\]
\[ \Rightarrow I = \frac{2}{3}\]
APPEARS IN
RELATED QUESTIONS
If f(x) is a continuous function defined on [−a, a], then prove that
Prove that:
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is