Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 x \left( 1 - x \right)^5 d x . Then, \]
\[I = \int_0^1 \left( x - 1 + 1 \right) \left( 1 - x \right)^5 d x\]
\[ \Rightarrow I = \int_0^1 \left[ - \left( 1 - x \right)^6 + \left( 1 - x \right)^5 \right] d x\]
\[ \Rightarrow I = \left[ \frac{\left( 1 - x \right)^7}{7} \right]_0^1 - \left[ \frac{\left( 1 - x \right)^6}{6} \right]_0^1 \]
\[ \Rightarrow I = - \frac{1}{7} + \frac{1}{6}\]
\[ \Rightarrow I = \frac{1}{42}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
If f is an integrable function, show that
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`