English

1 ∫ 0 X ( 1 − X ) 5 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

Solution

\[Let\ I = \int_0^1 x \left( 1 - x \right)^5 d x . Then, \]
\[I = \int_0^1 \left( x - 1 + 1 \right) \left( 1 - x \right)^5 d x\]
\[ \Rightarrow I = \int_0^1 \left[ - \left( 1 - x \right)^6 + \left( 1 - x \right)^5 \right] d x\]
\[ \Rightarrow I = \left[ \frac{\left( 1 - x \right)^7}{7} \right]_0^1 - \left[ \frac{\left( 1 - x \right)^6}{6} \right]_0^1 \]
\[ \Rightarrow I = - \frac{1}{7} + \frac{1}{6}\]
\[ \Rightarrow I = \frac{1}{42}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 46 | Page 17

RELATED QUESTIONS

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×