Advertisements
Advertisements
Question
Solution
π/4
\[\text{We have}, \]
\[ I = \int_0^\frac{\pi}{2} \frac{\sin x}{\sin x + \cos x} d x . . . . . \left( 1 \right)\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sin\left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\cos x}{\cos x + \sin x} dx \]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{\cos x}{\sin x + \cos x} dx . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\sin x}{\sin x + \cos x} + \frac{\cos x}{\cos x + \sin x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{\sin x + \cos x}{\sin x + \cos x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Evaluate the following integral:
If f is an integrable function, show that
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Γ(1) is
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`