English

∫ π 2 0 √ Cos X − Cos 3 X ( Sec 2 X − 1 ) Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]
Sum

Solution

\[\text{Let I }=\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[= \int_0^\frac{\pi}{2} \sqrt{\cos x\left( 1 - \cos^2 x \right)}\left( - \tan^2 x \right) \cos^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x\left( \sin^2 x \right)} \sin^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x}\left| \sin x \right| \sin^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x}\left( 1 - \cos^2 x \right)\sin\ x\ dx ...................\left( \left| \sin x \right| = \sin x for 0 \leq x \leq \frac{\pi}{2} \right)\]

Put `cos x = z^2`

\[\therefore - \sin\ x\ dx = 2zdz\]

When

\[x \to 0, z \to 1\]

When

\[x \to \frac{\pi}{2}, z \to 0\]

\[\therefore I = - \int_1^0 z\left( 1 - z^4 \right)2zdz\]
\[ = - 2 \int_1^0 z^2 dz + 2 \int_1^0 z^6 dz\]
\[ = \left.- 2 \times \frac{z^3}{3}\right|_1^0 + \left.2 \times \frac{z^7}{7}\right|_1^0 \]
\[ = - \frac{2}{3}\left( 0 - 1 \right) + \frac{2}{7}\left( 0 - 1 \right)\]
\[ = \frac{2}{3} - \frac{2}{7}\]
\[ = \frac{8}{21}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 61 | Page 40

RELATED QUESTIONS

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Choose the correct alternative:

Γ(n) is


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×