Advertisements
Advertisements
Question
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
Solution
We have,
\[I = \int_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} d x ................(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)}{a^2 \cos^2 \left( \pi - x \right) + b^2 \sin^2 \left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} d x ...............(2)\]
Adding (1) and (2)
\[2I = \int_0^\pi \frac{x + \pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} d x\]
\[ = \pi \int_0^\pi \frac{1}{a^2 \cos^2 x + b^2 \sin^2 x} d x\]
\[ = \pi \int_0^\pi \frac{\sec^2 x}{a^2 + b^2 \tan^2 x}dx ...............\left(\text{Dividing numerator and denominator by }\cos^2 x \right)\]
\[ = 2\pi \int_0^\frac{\pi}{2} \frac{\sec^2 x}{a^2 + b^2 \tan^2 x}dx ..............\left[\text{Using }\int_0^{2a} f\left( x \right)dx = \int_0^a f\left( x \right)dx + \int_0^a f\left( 2a - x \right)dx \right]\]
\[\text{Putting }\tan x = t\]
\[ \Rightarrow \sec^2 x dx = dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \frac{\pi}{2}; t \to \infty \]
\[ \therefore 2I = 2\pi \int_0^\frac{\pi}{2} \frac{dt}{a^2 + b^2 t^2}\]
\[ \Rightarrow I = \frac{\pi}{b^2} \int_0^\frac{\pi}{2} \frac{dt}{\frac{a^2}{b^2} + t^2}\]
\[ = \frac{\pi}{b^2} \times \frac{b}{a} \left[ \tan^{- 1} \left( \frac{bt}{a} \right) \right]_0^\infty \]
\[ = \frac{\pi}{ab}\left[ \frac{\pi}{2} - 0 \right]\]
\[ = \frac{\pi}{ab} \times \frac{\pi}{2}\]
\[ = \frac{\pi^2}{2ab} \]
\[\text{Hence }I = \frac{\pi^2}{2ab}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Solve each of the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`