English

Π ∫ 0 X a 2 Cos 2 X + B 2 Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]

Sum

Solution

We have,

\[I = \int_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} d x ................(1)\]

\[ = \int_0^\pi \frac{\left( \pi - x \right)}{a^2 \cos^2 \left( \pi - x \right) + b^2 \sin^2 \left( \pi - x \right)} d x\]

\[ = \int_0^\pi \frac{\pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} d x ...............(2)\]

Adding (1) and (2)

\[2I = \int_0^\pi \frac{x + \pi - x}{a^2 \cos^2 x + b^2 \sin^2 x} d x\]

\[ = \pi \int_0^\pi \frac{1}{a^2 \cos^2 x + b^2 \sin^2 x} d x\]

\[ = \pi \int_0^\pi \frac{\sec^2 x}{a^2 + b^2 \tan^2 x}dx ...............\left(\text{Dividing numerator and denominator by }\cos^2 x \right)\]

\[ = 2\pi \int_0^\frac{\pi}{2} \frac{\sec^2 x}{a^2 + b^2 \tan^2 x}dx ..............\left[\text{Using }\int_0^{2a} f\left( x \right)dx = \int_0^a f\left( x \right)dx + \int_0^a f\left( 2a - x \right)dx \right]\]

\[\text{Putting }\tan x = t\]

\[ \Rightarrow \sec^2 x dx = dt\]

\[\text{When }x \to 0; t \to 0\]

\[\text{and }x \to \frac{\pi}{2}; t \to \infty \]

\[ \therefore 2I = 2\pi \int_0^\frac{\pi}{2} \frac{dt}{a^2 + b^2 t^2}\]

\[ \Rightarrow I = \frac{\pi}{b^2} \int_0^\frac{\pi}{2} \frac{dt}{\frac{a^2}{b^2} + t^2}\]

\[ = \frac{\pi}{b^2} \times \frac{b}{a} \left[ \tan^{- 1} \left( \frac{bt}{a} \right) \right]_0^\infty \]

\[ = \frac{\pi}{ab}\left[ \frac{\pi}{2} - 0 \right]\]

\[ = \frac{\pi}{ab} \times \frac{\pi}{2}\]

\[ = \frac{\pi^2}{2ab} \]

\[\text{Hence }I = \frac{\pi^2}{2ab}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 43 | Page 122

RELATED QUESTIONS

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×