English

Π / 4 ∫ 0 Sin 2 X Sin 3 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]

Sum

Solution

\[Let, I = \int_0^\frac{\pi}{4} \sin2x \sin3x d x ..................(1)\]

\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} 2\cos2x\frac{\cos3x}{3}dx\]

\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} + \frac{4}{9} \int_0^\frac{\pi}{4} \sin2x \sin3x d x\]

\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} + \frac{4}{9}I ..............\left[From (1) \right]\]

\[ \Rightarrow \frac{5}{9}I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} \]

\[ \Rightarrow \frac{5}{9}I = \frac{1}{3\sqrt{2}} + 0\]

\[ \Rightarrow \frac{5}{9}I = \frac{1}{3\sqrt{2}}\]

\[ \therefore I = \frac{3}{5\sqrt{2}}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 16 | Page 121

RELATED QUESTIONS

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

`Γ(3/2)`


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×