Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
Solution
\[Let, I = \int_0^\frac{\pi}{4} \sin2x \sin3x d x ..................(1)\]
\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} 2\cos2x\frac{\cos3x}{3}dx\]
\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} + \frac{4}{9} \int_0^\frac{\pi}{4} \sin2x \sin3x d x\]
\[ \Rightarrow I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} + \frac{4}{9}I ..............\left[From (1) \right]\]
\[ \Rightarrow \frac{5}{9}I = \left[ - \sin2x\frac{\cos3x}{3} \right]_0^\frac{\pi}{4} + \frac{2}{3} \left[ \cos2x\frac{\sin3x}{3} \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow \frac{5}{9}I = \frac{1}{3\sqrt{2}} + 0\]
\[ \Rightarrow \frac{5}{9}I = \frac{1}{3\sqrt{2}}\]
\[ \therefore I = \frac{3}{5\sqrt{2}}\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
`Γ(3/2)`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: