Advertisements
Advertisements
Question
Evaluate each of the following integral:
Solution
\[I = \int_0^1 x e^{x^2} dx\]
\[ = \frac{1}{2} \int_0^1 e^{x^2} 2xdx\]
Put \[x^2 = z\]
When \[x \to 0, z \to 0\]
When \[x \to 1, z \to 1\]
\[\therefore I = \frac{1}{2} \int_0^1 e^z dz\]
\[ = \frac{1}{2} \left.\times {e^z}\right|_0^1 \]
\[ = \frac{1}{2}\left( e - e^0 \right)\]
\[ = \frac{1}{2}\left( e - 1 \right)\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
Γ(4)
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.