Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \sin^3 x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \sin x \sin^2 x\ d\ x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \sin x \left( 1 - \cos^2 x \right) dx\]
\[Let u = \cos x, du = - \sin\ x\ dx\]
\[ \therefore I = \int - \left( 1 - u^2 \right) du\]
\[ \Rightarrow I = \left[ \frac{u^3}{3} - u \right]\]
\[ \Rightarrow I = \left[ \frac{\cos^3 x}{3} - \cos x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 - \frac{1}{3} + 1\]
\[ \Rightarrow I = \frac{2}{3}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`