English

Π / 2 ∫ 0 Sin 3 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

Solution

\[Let\ I = \int_0^\frac{\pi}{2} \sin^3 x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \sin x \sin^2 x\ d\ x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \sin x \left( 1 - \cos^2 x \right) dx\]
\[Let u = \cos x, du = - \sin\ x\ dx\]
\[ \therefore I = \int - \left( 1 - u^2 \right) du\]
\[ \Rightarrow I = \left[ \frac{u^3}{3} - u \right]\]
\[ \Rightarrow I = \left[ \frac{\cos^3 x}{3} - \cos x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 - \frac{1}{3} + 1\]
\[ \Rightarrow I = \frac{2}{3}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 56 | Page 17

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_0^2 x\left[ x \right] dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

If n > 0, then Γ(n) is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×