Advertisements
Advertisements
Question
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
Solution
\[Let I = \int_1^5 \frac{x}{\sqrt{2x - 1}} d x\]
\[Let, 2x - 1 = t,\text{ then }2dx = dt, \]
\[\text{When, }x \to 1 ; t \to 1\text{ and x to 5; } t \to 9\]
\[x = \frac{t + 1}{2}\]
\[I = \frac{1}{2} \int_1^9 \frac{t + 1}{\sqrt{t}} \times \frac{dt}{2}\]
\[ = \frac{1}{4} \left[ \frac{2 t^\frac{3}{2}}{3} + 2\sqrt{t} \right]_1^9 \]
\[ = \frac{1}{4}\left[ 18 + 6 - \frac{2}{3} - 2 \right]\]
\[ = \frac{16}{3}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Solve each of the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x