Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \left( \cos^{- 1} x \right)^2 d x . Then, \]
\[I = \int_0^1 1 \left( \cos^{- 1} x \right)^2 d x\]
\[\text{Integrating by parts}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 - \int_0^1 2x \cos^{- 1} x \frac{- 1}{\sqrt{1 - x^2}} dx\]
\[\text{Again, integrating second term by parts}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 + \left\{ 2 \left[ \sqrt{1 - x^2} \cos^{- 1} x \right]_0^1 - 2 \int_0^1 \frac{1}{\sqrt{1 - x^2}}\sqrt{1 - x^2} dx \right\}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 + 2 \left[ \sqrt{1 - x^2} \cos^{- 1} x \right]_0^1 - 2 \left[ x \right]_0^1 \]
\[ \Rightarrow I = 0 + \frac{2\pi}{2} - 2\]
\[ \Rightarrow I = \pi - 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int x^3/(x + 1)` is equal to ______.