English

A ∫ 0 Sin − 1 √ X a + X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]
Sum

Solution

\[Let\, I = \int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[Let, x = a \tan^2 \theta \Rightarrow \theta = \tan^{- 1} \sqrt{\frac{x}{a}}\]

\[When, x \to x ; \theta \to 0\ and\ x\ \to a ; \theta \to \frac{\pi}{4}\]

\[and\ dx\ = 2a \tan\theta se c^2 \theta d\theta\]

\[Then, \]

\[I = \int\limits_0^\frac{\pi}{4} \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} 2a \tan\theta se c^2 \theta\ d\theta\]

\[ \Rightarrow I = {2a \int}^\frac{\pi}{4}_0 \sin^{- 1} \left( \sin\theta \right) \tan\theta se c^2 \theta d\theta\]

\[ \Rightarrow I = {2a \int}^\frac{\pi}{4}_0 \theta \tan\theta se c^2 \theta d\theta\]

\[Let, \tan \theta = t \Rightarrow \theta = \tan^{- 1} t\]

\[ \Rightarrow se c^2 \theta d\theta = dt\]

\[when, \theta \to 0 ; t \to 0 and \theta \to \frac{\pi}{4} ; t \to 1\]

\[Then, I = 2a \int_0^1 \tan^{- 1} t\ t \ dt\]

\[ = 2a \int_0^1 \tan^{- 1} t\ t\ dt\]

\[ = 2a \left[ \tan^{- 1} t \frac{t^2}{2} \right]_0^1 - \frac{2a}{2} \int_0^1 \frac{t^2}{1 + t^2} dt\]

\[ = 2a\left[ \frac{\pi}{4} \times \frac{1}{2} - 0 \right] - a \int_0^1 \left[ 1 - \frac{1}{1 + t^2} \right] dt\]

\[ = 2a\left[ \frac{\pi}{8} \right] - a \left[ t - \tan^{- 1} t \right]_0^1 \]

\[ = \frac{\pi a}{4} - a\left[ 1 - \frac{\pi}{4} \right]\]

\[ = \frac{\pi a}{4} - a + \frac{\pi a}{4}\]

\[ = \frac{\pi a}{2} - a\]

\[ = a\left( \frac{\pi}{2} - 1 \right)\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 52 | Page 40

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int x^3/(x + 1)` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×