Advertisements
Advertisements
Question
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Options
log 2 − 1
log 2
log 4 − 1
− log 2
Solution
log 2
\[\text{We have}, \]
\[I = \int_0^\infty \frac{1}{1 + e^x} d x\]
\[\text{Putting } e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \Rightarrow dx = \frac{dt}{t}\]
\[\text{When}\ x \to 0; t \to 1\]
\[\text{and }x \to \infty ; t \to \infty \]
\[ \therefore I = \int_1^\infty \frac{1}{t\left( 1 + t \right)} d t\]
\[ = \int_1^\infty \frac{1}{t + t^2} d t\]
\[ = \int_1^\infty \frac{1}{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2} d t\]
\[= \frac{1}{2 \times \frac{1}{2}} \left[ \log\left| \frac{t + \frac{1}{2} - \frac{1}{2}}{t + \frac{1}{2} + \frac{1}{2}} \right| \right]_1^\infty \]
\[ = \left[ \log\left| \frac{t}{t + 1} \right| \right]_1^\infty \]
\[ = \left[ \log\left| \frac{\frac{t}{t}}{\frac{t}{t} + \frac{1}{t}} \right| \right]_1^\infty \]
\[ = \left[ \log\left| \frac{1}{1 + \frac{1}{t}} \right| \right]_1^\infty \]
\[ = \log\frac{1}{1 + 0} - \log\frac{1}{1 + 1}\]
\[ = \log\left( 1 \right) - \log\left( \frac{1}{2} \right)\]
\[ = 0 - \left( - \log2 \right)\]
\[ = \log2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
Γ(4)
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`