English

∞ ∫ 0 1 1 + E X D X Equals(A) Log 2 − 1 (B) Log 2 (C) Log 4 − 1 (D) − Log 2 - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals

Options

  •  log 2 − 1

  •  log 2

  • log 4 − 1

  •  − log 2

MCQ

Solution

 log 2 

\[\text{We have}, \]
\[I = \int_0^\infty \frac{1}{1 + e^x} d x\]
\[\text{Putting } e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \Rightarrow dx = \frac{dt}{t}\]
\[\text{When}\ x \to 0; t \to 1\]
\[\text{and }x \to \infty ; t \to \infty \]
\[ \therefore I = \int_1^\infty \frac{1}{t\left( 1 + t \right)} d t\]
\[ = \int_1^\infty \frac{1}{t + t^2} d t\]
\[ = \int_1^\infty \frac{1}{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2} d t\]

\[= \frac{1}{2 \times \frac{1}{2}} \left[ \log\left| \frac{t + \frac{1}{2} - \frac{1}{2}}{t + \frac{1}{2} + \frac{1}{2}} \right| \right]_1^\infty \]

\[ = \left[ \log\left| \frac{t}{t + 1} \right| \right]_1^\infty \]

\[ = \left[ \log\left| \frac{\frac{t}{t}}{\frac{t}{t} + \frac{1}{t}} \right| \right]_1^\infty \]

\[ = \left[ \log\left| \frac{1}{1 + \frac{1}{t}} \right| \right]_1^\infty \]

\[ = \log\frac{1}{1 + 0} - \log\frac{1}{1 + 1}\]

\[ = \log\left( 1 \right) - \log\left( \frac{1}{2} \right)\]

\[ = 0 - \left( - \log2 \right)\]

\[ = \log2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 6 | Page 117

RELATED QUESTIONS

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following:

Γ(4)


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×