मराठी

∞ ∫ 0 1 1 + E X D X Equals(A) Log 2 − 1 (B) Log 2 (C) Log 4 − 1 (D) − Log 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals

पर्याय

  •  log 2 − 1

  •  log 2

  • log 4 − 1

  •  − log 2

MCQ

उत्तर

 log 2 

\[\text{We have}, \]
\[I = \int_0^\infty \frac{1}{1 + e^x} d x\]
\[\text{Putting } e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \Rightarrow dx = \frac{dt}{t}\]
\[\text{When}\ x \to 0; t \to 1\]
\[\text{and }x \to \infty ; t \to \infty \]
\[ \therefore I = \int_1^\infty \frac{1}{t\left( 1 + t \right)} d t\]
\[ = \int_1^\infty \frac{1}{t + t^2} d t\]
\[ = \int_1^\infty \frac{1}{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2} d t\]

\[= \frac{1}{2 \times \frac{1}{2}} \left[ \log\left| \frac{t + \frac{1}{2} - \frac{1}{2}}{t + \frac{1}{2} + \frac{1}{2}} \right| \right]_1^\infty \]

\[ = \left[ \log\left| \frac{t}{t + 1} \right| \right]_1^\infty \]

\[ = \left[ \log\left| \frac{\frac{t}{t}}{\frac{t}{t} + \frac{1}{t}} \right| \right]_1^\infty \]

\[ = \left[ \log\left| \frac{1}{1 + \frac{1}{t}} \right| \right]_1^\infty \]

\[ = \log\frac{1}{1 + 0} - \log\frac{1}{1 + 1}\]

\[ = \log\left( 1 \right) - \log\left( \frac{1}{2} \right)\]

\[ = 0 - \left( - \log2 \right)\]

\[ = \log2\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 6 | पृष्ठ ११७

संबंधित प्रश्‍न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×