Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) d x\]
\[Here, f\left( x \right) = log\left( \frac{2 - \sin x}{2 + \sin x} \right)\]
\[f\left( - x \right) = log\left( \frac{2 - \sin\left( - x \right)}{2 + \sin\left( - x \right)} \right) = log\left( \frac{2 + \sin x}{2 - \sin x} \right) = - log\left( \frac{2 - \sin x}{2 + \sin x} \right) = - f\left( x \right)\]
\[\text{Hence} f\left( x \right) \text{is an odd function}\]
\[ \therefore I = 0\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^4 x dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`