Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} x^2 \cos x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \sin x d x\]
\[ \Rightarrow I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} - \left[ - 2x \cos x \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 2 \cos x d x\]
\[ \Rightarrow I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} + \left[ 2x \cos x \right]_0^\frac{\pi}{2} - \left[ 2 \sin x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^2}{4} - 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Find: `int logx/(1 + log x)^2 dx`