Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
पर्याय
1
e − 1
0
− 1
उत्तर
e − 1
\[Let\, I = \int_0^\frac{\pi}{2} \cos x\ e^{\sin x}\ d x\]
\[Let\ \sin x = t, then\ \cos x dx = dt\]
\[When\ x = 0, t = 0\ and\ x = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[I = \int_0^1 e^t dt\]
\[ = \left[ e^t \right]_0^1 \]
\[ = e - 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Solve each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Evaluate :
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Find: `int logx/(1 + log x)^2 dx`