Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} d\ x . Then, \]
\[\text{Dividing the numerator and denominator by} \cos^2 x, we\ get\]
\[I = \int_0^\frac{\pi}{2} \frac{\sec^2 x}{a^2 \tan^2 x + b^2} d x\]
\[Let\ \tan x = t . Then, \sec^2 x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{2} , t = \infty \]
\[ \therefore I = \int_0^\infty \frac{1}{a^2 t^2 + b^2} d t\]
\[ \Rightarrow I = \frac{1}{a^2} \int_0^\infty \frac{1}{t^2 + \frac{b^2}{a^2}} dt\]
\[ \Rightarrow I = \frac{1}{a^2} \times \frac{a}{b} \left[ \tan^{- 1} \frac{at}{b} \right]_0^\infty \]
\[ \Rightarrow I = \frac{1}{ab}\frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{2ab}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: