मराठी

Π ∫ 0 X Sin 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi x \sin^3 x\ dx\]

उत्तर

\[Let\ I = \int_0^\pi x \sin^3 x\ d x . . . (i)\]
\[ = \int_0^\pi \left( \pi - x \right) \sin^3 \left( \pi - x \right) d x\]
\[ = \int_0^\pi \left( \pi - x \right) \sin^3 x dx . . . (ii)\]
\[\text{Adding (i) and (ii) we get}\]
\[2I = \int_0^\pi \left( x + \pi - x \right) \sin^3 x\ d x\]
\[ = \int_0^\pi \pi \sin^3 x d x\]
\[ = \int_0^\pi \pi \frac{3 \sin x - \sin 3x}{4} d\ x\]
\[ = \frac{\pi}{4} \int_0^\pi \left( 3 \sin x - \sin 3x \right) d x\]
\[ = \frac{\pi}{4} \left[ - 3 \cos x + \frac{\cos 3x}{3} \right]_0^\pi \]
\[ = \frac{\pi}{4}\left[ - 3 \cos \pi + 3\cos 0 + \frac{\cos 3\pi}{3} - \frac{\cos 0}{3} \right]\]
\[ = \frac{\pi}{4}\left[ 3 + 3 + \frac{- 1}{3} - \frac{1}{3} \right]\]
\[ = \frac{\pi}{2}\left[ 3 - \frac{1}{3} \right]\]
\[ = \frac{\pi}{2} \times \frac{8}{3}\]
\[ = \frac{4\pi}{3}\]
\[ \therefore I = \frac{2\pi}{3}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 13 | पृष्ठ ९५

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_1^e \log x\ dx =\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×