Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi x \sin^3 x\ d x . . . (i)\]
\[ = \int_0^\pi \left( \pi - x \right) \sin^3 \left( \pi - x \right) d x\]
\[ = \int_0^\pi \left( \pi - x \right) \sin^3 x dx . . . (ii)\]
\[\text{Adding (i) and (ii) we get}\]
\[2I = \int_0^\pi \left( x + \pi - x \right) \sin^3 x\ d x\]
\[ = \int_0^\pi \pi \sin^3 x d x\]
\[ = \int_0^\pi \pi \frac{3 \sin x - \sin 3x}{4} d\ x\]
\[ = \frac{\pi}{4} \int_0^\pi \left( 3 \sin x - \sin 3x \right) d x\]
\[ = \frac{\pi}{4} \left[ - 3 \cos x + \frac{\cos 3x}{3} \right]_0^\pi \]
\[ = \frac{\pi}{4}\left[ - 3 \cos \pi + 3\cos 0 + \frac{\cos 3\pi}{3} - \frac{\cos 0}{3} \right]\]
\[ = \frac{\pi}{4}\left[ 3 + 3 + \frac{- 1}{3} - \frac{1}{3} \right]\]
\[ = \frac{\pi}{2}\left[ 3 - \frac{1}{3} \right]\]
\[ = \frac{\pi}{2} \times \frac{8}{3}\]
\[ = \frac{4\pi}{3}\]
\[ \therefore I = \frac{2\pi}{3}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Find: `int logx/(1 + log x)^2 dx`