Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\pi x \sin^3 x\ d x . . . (i)\]
\[ = \int_0^\pi \left( \pi - x \right) \sin^3 \left( \pi - x \right) d x\]
\[ = \int_0^\pi \left( \pi - x \right) \sin^3 x dx . . . (ii)\]
\[\text{Adding (i) and (ii) we get}\]
\[2I = \int_0^\pi \left( x + \pi - x \right) \sin^3 x\ d x\]
\[ = \int_0^\pi \pi \sin^3 x d x\]
\[ = \int_0^\pi \pi \frac{3 \sin x - \sin 3x}{4} d\ x\]
\[ = \frac{\pi}{4} \int_0^\pi \left( 3 \sin x - \sin 3x \right) d x\]
\[ = \frac{\pi}{4} \left[ - 3 \cos x + \frac{\cos 3x}{3} \right]_0^\pi \]
\[ = \frac{\pi}{4}\left[ - 3 \cos \pi + 3\cos 0 + \frac{\cos 3\pi}{3} - \frac{\cos 0}{3} \right]\]
\[ = \frac{\pi}{4}\left[ 3 + 3 + \frac{- 1}{3} - \frac{1}{3} \right]\]
\[ = \frac{\pi}{2}\left[ 3 - \frac{1}{3} \right]\]
\[ = \frac{\pi}{2} \times \frac{8}{3}\]
\[ = \frac{4\pi}{3}\]
\[ \therefore I = \frac{2\pi}{3}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate the following integral:
Solve each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.