English

Π ∫ 0 X Sin 3 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi x \sin^3 x\ dx\]

Solution

\[Let\ I = \int_0^\pi x \sin^3 x\ d x . . . (i)\]
\[ = \int_0^\pi \left( \pi - x \right) \sin^3 \left( \pi - x \right) d x\]
\[ = \int_0^\pi \left( \pi - x \right) \sin^3 x dx . . . (ii)\]
\[\text{Adding (i) and (ii) we get}\]
\[2I = \int_0^\pi \left( x + \pi - x \right) \sin^3 x\ d x\]
\[ = \int_0^\pi \pi \sin^3 x d x\]
\[ = \int_0^\pi \pi \frac{3 \sin x - \sin 3x}{4} d\ x\]
\[ = \frac{\pi}{4} \int_0^\pi \left( 3 \sin x - \sin 3x \right) d x\]
\[ = \frac{\pi}{4} \left[ - 3 \cos x + \frac{\cos 3x}{3} \right]_0^\pi \]
\[ = \frac{\pi}{4}\left[ - 3 \cos \pi + 3\cos 0 + \frac{\cos 3\pi}{3} - \frac{\cos 0}{3} \right]\]
\[ = \frac{\pi}{4}\left[ 3 + 3 + \frac{- 1}{3} - \frac{1}{3} \right]\]
\[ = \frac{\pi}{2}\left[ 3 - \frac{1}{3} \right]\]
\[ = \frac{\pi}{2} \times \frac{8}{3}\]
\[ = \frac{4\pi}{3}\]
\[ \therefore I = \frac{2\pi}{3}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 13 | Page 95

RELATED QUESTIONS

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×