Advertisements
Advertisements
Question
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
Solution
\[\int_{- a}^a \frac{x e^{x^2}}{1 + x^2} d x\]
\[\text{Let }f(x) = \frac{x e^{x^2}}{1 + x^2}\]
\[\text{Consider }f(-x) = - \frac{x e^{x^2}}{1 + x^2} = - f\left( x \right)\]
Thus f(x) is an odd function
Therefore,
\[ \int_{- a}^a \frac{x e^{x^2}}{1 + x^2} d x = 0\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Evaluate :
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`