Advertisements
Advertisements
प्रश्न
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
उत्तर
\[\int_{- a}^a \frac{x e^{x^2}}{1 + x^2} d x\]
\[\text{Let }f(x) = \frac{x e^{x^2}}{1 + x^2}\]
\[\text{Consider }f(-x) = - \frac{x e^{x^2}}{1 + x^2} = - f\left( x \right)\]
Thus f(x) is an odd function
Therefore,
\[ \int_{- a}^a \frac{x e^{x^2}}{1 + x^2} d x = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^4 x dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`