मराठी

9 ∫ 4 1 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

उत्तर

\[Let I = \int_4^9 \frac{1}{\sqrt{x}} d x . Then, \]
\[I = 2 \int_4^9 \frac{1}{2\sqrt{x}} d x\]
\[ \Rightarrow I = 2 \left[ \sqrt{x} \right]_4^9 \]
\[ \Rightarrow I = 2\left( 3 - 2 \right)\]
\[ \Rightarrow I = 2\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 1 | पृष्ठ १६

संबंधित प्रश्‍न

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

`Γ(3/2)`


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×