मराठी

∫ 1 0 1 1 + 2 X + 2 X 2 + 2 X 3 + X 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]
बेरीज

उत्तर

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right)^2 + 2x\left( x^2 + 1 \right)}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right)\left( x^2 + 1 + 2x \right)}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right) \left( x + 1 \right)^2}dx\]
Let 
\[\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{Cx + D}{x^2 + 1}\]
\[ \Rightarrow 1 = A\left( x + 1 \right)\left( x^2 + 1 \right) + B\left( x^2 + 1 \right) + \left( Cx + D \right) \left( x + 1 \right)^2\]
Putting x = −1, we have
1 = 2B
\[\Rightarrow B = \frac{1}{2}\]
Putting x = 0, we have
A + B + D = 1              .....(2)
Equating coefficient of x3 on both sides, we have
A + C = 0                    .....(3)
Equating coefficient of xon both sides, we have
A + B + 2C + D = 0               .....(4)
 2C = −1               [Using (1)]
\[\Rightarrow C = - \frac{1}{2}\]
\[\therefore A = \frac{1}{2}\]
Putting
\[A = \frac{1}{2}, B = \frac{1}{2}\] and
\[C = - \frac{1}{2}\]  in (4), we have
D = 0
\[\therefore \int_0^1 \frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)}dx\]
\[ = \int_0^1 \frac{\frac{1}{2}}{x + 1}dx + \int_0^1 \frac{\frac{1}{2}}{\left( x + 1 \right)^2}dx + \int_0^1 \frac{- \frac{1}{2}x}{x^2 + 1}\]
\[ = \left.\frac{1}{2} \log\left( x + 1 \right)\right|_0^1 + \left.\frac{1}{2} \times \left( - \frac{1}{x + 1} \right)\right|_0^1 - \frac{1}{4} \int_0^1 \frac{2x}{x^2 + 1}dx\]
\[ = \frac{1}{2}\left( \log2 - \log1 \right) - \frac{1}{2}\left( \frac{1}{2} - 1 \right) - \left.\frac{1}{4} \log\left( x^2 + 1 \right)\right|_0^1 \]
\[ = \frac{1}{2}\log2 + \frac{1}{4} - \frac{1}{4}\left( \log2 - \log1 \right) ................\left( \log1 = 0 \right)\]
\[= \frac{1}{2}\log 2 + \frac{1}{4}\log e - \frac{1}{4}\log2\]
\[ = \frac{1}{4}\log 2 + \frac{1}{4}\log e\]
\[ = \frac{1}{4}\left( \log 2 + \log e \right)\]
\[ = \frac{1}{4}\log\left( 2e \right)\]
 
 
shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 68 | पृष्ठ १८

संबंधित प्रश्‍न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

Γ(4)


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×