Advertisements
Advertisements
प्रश्न
उत्तर
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right)^2 + 2x\left( x^2 + 1 \right)}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right)\left( x^2 + 1 + 2x \right)}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right) \left( x + 1 \right)^2}dx\]
\[ \Rightarrow 1 = A\left( x + 1 \right)\left( x^2 + 1 \right) + B\left( x^2 + 1 \right) + \left( Cx + D \right) \left( x + 1 \right)^2\]
D = 0
\[ = \int_0^1 \frac{\frac{1}{2}}{x + 1}dx + \int_0^1 \frac{\frac{1}{2}}{\left( x + 1 \right)^2}dx + \int_0^1 \frac{- \frac{1}{2}x}{x^2 + 1}\]
\[ = \left.\frac{1}{2} \log\left( x + 1 \right)\right|_0^1 + \left.\frac{1}{2} \times \left( - \frac{1}{x + 1} \right)\right|_0^1 - \frac{1}{4} \int_0^1 \frac{2x}{x^2 + 1}dx\]
\[ = \frac{1}{2}\left( \log2 - \log1 \right) - \frac{1}{2}\left( \frac{1}{2} - 1 \right) - \left.\frac{1}{4} \log\left( x^2 + 1 \right)\right|_0^1 \]
\[ = \frac{1}{2}\log2 + \frac{1}{4} - \frac{1}{4}\left( \log2 - \log1 \right) ................\left( \log1 = 0 \right)\]
\[ = \frac{1}{4}\log 2 + \frac{1}{4}\log e\]
\[ = \frac{1}{4}\left( \log 2 + \log e \right)\]
\[ = \frac{1}{4}\log\left( 2e \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
Γ(4)
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.