Advertisements
Advertisements
प्रश्न
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
उत्तर
Put x – α = t2.
Then β – x = β – (t2 +α)
= β – t2 – α
= – t2 – α + β
And dx = 2tdt.
Now I = `int (2"t dt")/sqrt("t"^2(beta - alpha - "t"^2))`
= `int (2"dt")/sqrt((beta - alpha - "t"^2))`
= `2 "dt"/sqrt("k"^2 - "t"^2)`, where k2 = β – α
= `2sin^-1 "t"/"k" + "C"`
= `2sin^-1 sqrt((x - alpha)/(beta - alpha)) + "C"`
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f(2a − x) = −f(x), prove that
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`