Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
उत्तर
We have,
\[I = \int_0^\frac{\pi}{2} \frac{1}{2\cos x + 4\sin x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{2 - 2 \tan^2 \frac{x}{2} + 8\tan\frac{x}{2}} d x\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2}se c^2 \frac{x}{2}dx = dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \frac{\pi}{2}; t \to 1\]
\[ \therefore I = 2 \int_0^1 \frac{dt}{2 - 2 t^2 + 8t}\]
\[ = - \frac{2}{2} \int_0^1 \frac{dt}{t^2 - 4 t - 1}\]
\[ = - \int_0^1 \frac{dt}{\left( t - 2 \right)^2 - 5}\]
\[ = \int_0^1 \frac{dt}{\left( \sqrt{5} \right)^2 - \left( t - 2 \right)^2}\]
\[ = \frac{1}{2\sqrt{5}} \left[ \log\left| \frac{\sqrt{5} + t - 2}{\sqrt{5} - t + 2} \right| \right]_0^1 \]
\[ = \frac{1}{2\sqrt{5}}\left[ \log\frac{\sqrt{5} - 1}{\sqrt{5} + 1} - \log\frac{\sqrt{5} - 2}{\sqrt{5} + 2} \right] \]
\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{\sqrt{5} - 1}{\sqrt{5} + 1} \times \frac{\sqrt{5} + 2}{\sqrt{5} - 2} \right]\]
\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{5 + 2\sqrt{5} - \sqrt{5} - 2}{5 - 2\sqrt{5} + \sqrt{5} - 2} \right]\]
\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{\sqrt{5} + 3}{- \sqrt{5} + 3} \right]\]
\[I = \frac{1}{2\sqrt{5}}\log \left( \frac{3 + \sqrt{5}}{3 - \sqrt{5}} \times \frac{3 + \sqrt{5}}{3 + \sqrt{5}} \right) \]
\[I = \frac{1}{2\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right)^2 \]
\[I = \frac{2}{2\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right) \]
\[I = \frac{1}{\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f is an integrable function, show that
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`