Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
उत्तर
\[\int_0^\frac{\pi}{2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos^2 x}{\left( 1 + \cos x \right)^2} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)^2} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos x}{1 + \cos x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos x - 1 + 1}{\left( 1 + \cos x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{2 - \left( 1 + \cos x \right)}{\left( 1 + \cos x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{2}{1 + \cos x}dx - \int_0^\frac{\pi}{2} dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)\left( 1 - \cos x \right)}dx - \int_0^\frac{\pi}{2} dx\]
\[ = 2 \int_0^\frac{\pi}{2} \frac{1 - \cos x}{\sin^2 x}dx - \left[ x \right]_0^\frac{\pi}{2} \]
\[ = 2 \int_0^\frac{\pi}{2} \left( \ cosec^2 x - \ cosec x\ cotx \right) dx - \left[ x \right]_0^\frac{\pi}{2} \]
\[ = 2 \left[ - cotx + \ cosec x \right]_0^\frac{\pi}{2} - \left[ x \right]_0^\frac{\pi}{2} \]
\[ = 2 - \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Find: `int logx/(1 + log x)^2 dx`