Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^4 \frac{1}{\sqrt{16 - x^2}} d x\]
\[ = \int_0^4 \frac{1}{\sqrt{4^2 - x^2}} d x\]
\[ = \left[ \sin^{- 1} \frac{x}{4} \right]_0^4 \]
\[ = \left( \frac{\pi}{2} - 0 \right)\]
\[ = \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
Γ(1) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.