मराठी

1 ∫ 0 √ X ( 1 − X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

उत्तर

\[Let\ I = \int_0^1 \sqrt{x\left( 1 - x \right)} d x . Then, \]
\[I = \int_0^1 \sqrt{\frac{1}{4} - \left( x - \frac{1}{2} \right)^2} dx\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \sqrt{1 - \frac{\left( x - \frac{1}{2} \right)^2}{\frac{1}{4}}} dx\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \sqrt{1 - \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right)^2} dx\]
\[Let \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) = \sin u\]
\[ \Rightarrow 2 dx = \cos u du\]
\[ \therefore I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sqrt{1 - \sin^2 u} \cos u du\]
\[ \Rightarrow I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 u du\]
\[ \Rightarrow I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{\cos 2u + 1}{2} \right) du\]
\[ \Rightarrow I = \frac{1}{8} \left[ \frac{\sin 2u}{2} + u \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{8}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ \Rightarrow I = \frac{\pi}{8}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 41 | पृष्ठ १७

संबंधित प्रश्‍न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×