Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \sqrt{x\left( 1 - x \right)} d x . Then, \]
\[I = \int_0^1 \sqrt{\frac{1}{4} - \left( x - \frac{1}{2} \right)^2} dx\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \sqrt{1 - \frac{\left( x - \frac{1}{2} \right)^2}{\frac{1}{4}}} dx\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \sqrt{1 - \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right)^2} dx\]
\[Let \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) = \sin u\]
\[ \Rightarrow 2 dx = \cos u du\]
\[ \therefore I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sqrt{1 - \sin^2 u} \cos u du\]
\[ \Rightarrow I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 u du\]
\[ \Rightarrow I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{\cos 2u + 1}{2} \right) du\]
\[ \Rightarrow I = \frac{1}{8} \left[ \frac{\sin 2u}{2} + u \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{8}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ \Rightarrow I = \frac{\pi}{8}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.