मराठी

1 ∫ 0 1 2 X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

उत्तर

\[Let\ I = \int_0^1 \frac{1}{2 x^2 + x + 1} d\ x . Then, \]
\[I = \frac{1}{2} \int_0^1 \frac{1}{x^2 + \frac{x}{2} + \frac{1}{2}} d x\]
\[I = \frac{1}{2} \int_0^1 \frac{1}{\left( x^2 + \frac{x}{2} + \frac{1}{16} \right) - \frac{1}{16} + \frac{1}{2}} d\ x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \frac{1}{\left( x + \frac{1}{4} \right)^2 + \frac{7}{16}} dx\]
\[ \Rightarrow I = \frac{1}{2} \times \frac{4}{\sqrt{7}} \left[ \tan^{- 1} \left( \frac{x + \frac{1}{4}}{\frac{\sqrt{7}}{4}} \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{\sqrt{7}}\left( \tan^{- 1} \frac{5}{\sqrt{7}} - \tan^{- 1} \frac{1}{\sqrt{7}} \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 40 | पृष्ठ १७

संबंधित प्रश्‍न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×