Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \frac{1}{2 x^2 + x + 1} d\ x . Then, \]
\[I = \frac{1}{2} \int_0^1 \frac{1}{x^2 + \frac{x}{2} + \frac{1}{2}} d x\]
\[I = \frac{1}{2} \int_0^1 \frac{1}{\left( x^2 + \frac{x}{2} + \frac{1}{16} \right) - \frac{1}{16} + \frac{1}{2}} d\ x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \frac{1}{\left( x + \frac{1}{4} \right)^2 + \frac{7}{16}} dx\]
\[ \Rightarrow I = \frac{1}{2} \times \frac{4}{\sqrt{7}} \left[ \tan^{- 1} \left( \frac{x + \frac{1}{4}}{\frac{\sqrt{7}}{4}} \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{\sqrt{7}}\left( \tan^{- 1} \frac{5}{\sqrt{7}} - \tan^{- 1} \frac{1}{\sqrt{7}} \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
Solve each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`