मराठी

Π / 4 ∫ 0 Sec X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/4} \sec x dx\]

उत्तर

\[Let I = \int_0^\frac{\pi}{4} \sec x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{4} \sec x \frac{\sec x + \tan x}{\sec x + \tan x} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} d x\]
\[Put u = \sec x + \tan x\]
\[ \Rightarrow du = \sec^2 x + \sec x \tan x dx\]
\[ \therefore \int_0^\frac{\pi}{4} \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} d x = \int\frac{du}{u}\]
\[ \Rightarrow I = \left[ \log u \right]\]
\[ \Rightarrow I = \left[ \log \left( \sec x + \tan x \right) \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \log \left( \sec\frac{\pi}{4} + \tan\frac{\pi}{4} \right) - \log \left( \sec 0 + \tan 0 \right)\]
\[ \Rightarrow I = \log (\sqrt{2} + 1) - \log 1\]
\[ \Rightarrow I = \log (\sqrt{2} + 1)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 12 | पृष्ठ १६

संबंधित प्रश्‍न

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_1^e \log x\ dx =\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

`Γ(3/2)`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×