Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\text{Putting }x = \tan \theta\]
\[ \Rightarrow dx = \sec^2 \theta d\theta\]
\[\text{When }x \to 0 ; \theta \to 0\]
\[\text{and }x \to \infty ; \theta \to \frac{\pi}{2}\]
\[\text{Now, integral becomes}\]
\[I = \int\limits_0^\frac{\pi}{2} \frac{\tan \theta}{\left( 1 + \tan \theta \right) \sec^2 \theta} \sec^2 \theta d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \frac{\tan \theta}{1 + \tan \theta} d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \frac{\frac{\sin \theta}{cos \theta}}{1 + \frac{\sin \theta}{\cos \theta}}d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\sin \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\sin\left( \frac{\pi}{2} - \theta \right)}{\sin\left( \frac{\pi}{2} - \theta \right) + \cos\left( \frac{\pi}{2} - \theta \right)}d\theta ..............\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\cos \theta}{\cos \theta + \sin \theta}d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\cos\theta}{\sin\theta + \cos\theta}d\theta . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}\]
\[2I = \int\limits_0^\frac{\pi}{2} \frac{\sin\theta + \cos\theta}{\sin\theta + \cos\theta} d\theta\]
\[ \Rightarrow 2I = \int\limits_0^\frac{\pi}{2} d\theta\]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
\[ \therefore \int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^4 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`