मराठी

∞ ∫ 0 X ( 1 + X ) ( 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\text{Putting }x = \tan \theta\]

\[ \Rightarrow dx = \sec^2 \theta d\theta\]

\[\text{When }x \to 0 ; \theta \to 0\]

\[\text{and }x \to \infty ; \theta \to \frac{\pi}{2}\]

\[\text{Now, integral becomes}\]

\[I = \int\limits_0^\frac{\pi}{2} \frac{\tan \theta}{\left( 1 + \tan \theta \right) \sec^2 \theta} \sec^2 \theta d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \frac{\tan \theta}{1 + \tan \theta} d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \frac{\frac{\sin \theta}{cos \theta}}{1 + \frac{\sin \theta}{\cos \theta}}d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\sin \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\sin\left( \frac{\pi}{2} - \theta \right)}{\sin\left( \frac{\pi}{2} - \theta \right) + \cos\left( \frac{\pi}{2} - \theta \right)}d\theta ..............\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\cos \theta}{\cos \theta + \sin \theta}d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \frac{\cos\theta}{\sin\theta + \cos\theta}d\theta . . . . . \left( 2 \right)\]

\[\text{Adding} \left( 1 \right) and \left( 2 \right), \text{we get}\]

\[2I = \int\limits_0^\frac{\pi}{2} \frac{\sin\theta + \cos\theta}{\sin\theta + \cos\theta} d\theta\]

\[ \Rightarrow 2I = \int\limits_0^\frac{\pi}{2} d\theta\]

\[ \Rightarrow 2I = \frac{\pi}{2}\]

\[ \Rightarrow I = \frac{\pi}{4}\]

\[ \therefore \int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 10 | पृष्ठ ९५

संबंधित प्रश्‍न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^4 x dx\]


\[\int\limits_2^3 e^{- x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×