मराठी

Π / 2 ∫ 0 X 2 Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]

बेरीज

उत्तर

\[\int_0^\frac{\pi}{2} x^2 \cos2x d x\]

\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \frac{\sin2x}{2}dx\]

\[ = \left[ x^2 \frac{sin2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} x \sin 2x dx\]

\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} - \left[ - x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} + \left[ - \int_0^\frac{\pi}{2} \frac{\cos2x}{2}dx \right]\]

\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} + \left[ x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} \frac{\cos2x}{2}dx\]

\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} + \left[ x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} - \frac{1}{2} \left[ \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} \]

\[ = 0 - \frac{\pi}{4} - 0\]

\[ = \frac{- \pi}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Revision Exercise | Q 21 | पृष्ठ १२१

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^2 \left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×