Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
उत्तर
\[\int_0^\frac{\pi}{2} x^2 \cos2x d x\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \frac{\sin2x}{2}dx\]
\[ = \left[ x^2 \frac{sin2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} x \sin 2x dx\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} - \left[ - x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} + \left[ - \int_0^\frac{\pi}{2} \frac{\cos2x}{2}dx \right]\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} + \left[ x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} \frac{\cos2x}{2}dx\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} + \left[ x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} - \frac{1}{2} \left[ \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} \]
\[ = 0 - \frac{\pi}{4} - 0\]
\[ = \frac{- \pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x