Advertisements
Advertisements
प्रश्न
पर्याय
loge 3
- \[\log_e \sqrt{3}\]
- \[\frac{1}{2}\log\left( - 1 \right)\]
log (−1)
उत्तर
\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{\sin2x} d x\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \ cosec2x\ dx\]
\[ = \frac{1}{2} \int_\frac{\pi}{6}^\frac{\pi}{3} 2\ cosec2x\ dx\]
\[ = \frac{- 1}{2} \left[ \log\left( \ cosec\ 2x\ + \cot2x \right) \right]_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \frac{- 1}{2}\left[ - 2\log\sqrt{3} \right]\]
\[ = \log\sqrt{3}\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`