मराठी

Π ∫ 0 X 1 + Cos α Sin X D X , 0 < α < π - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]
बेरीज

उत्तर

\[\text{We have}, \]

\[ I = \int_0^\pi \frac{x}{1 + \cos\alpha \sin x} d x . . . . . \left( 1 \right)\]

\[ = \int_0^\pi \frac{\pi - x}{1 + \cos\alpha \sin\left( \pi - x \right)}dx\]

\[ = \int_0^\pi \frac{\pi - x}{1 + \cos\alpha \sin x}dx . . . . . \left( 2 \right)\]

\[\text{Adding} \left( 1 \right) and \left( 2 \right) \text{we get}, \]

\[2I = \int_0^\pi \frac{x + \pi - x}{1 + \cos\alpha \sin x} d x\]

\[ \Rightarrow I = \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha\ sinx} dx\]

\[= \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha sinx}\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\cos\alpha \tan \frac{x}{2}}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\cos\alpha \tan \frac{x}{2}}dx\]

\[\text{Putting }\tan\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \sec^2 x dx = dt\]

\[\text{When }x \to 0; t \to 0\]

\[\text{and }x \to \pi; t \to \infty \]

\[ \therefore I = \frac{\pi}{2} \int_0^\infty \frac{2}{1 + t^2 + 2\cos\alpha t}dt\]

\[ = \frac{\pi}{2} \int_0^\infty \frac{2}{\left( t + \cos\alpha \right)^2 - \cos^2 \alpha + 1}dt\]

\[ = \pi \int_0^\infty \frac{1}{\left( t + \cos\alpha \right)^2 + \sin^2 \alpha}dt\]

\[ = \pi \left[ \frac{1}{\sin \alpha} \tan^{- 1} \left( \frac{t + \cos \alpha}{\sin \alpha} \right) \right]_0^1 \]

\[ = \frac{\pi}{sin\alpha}\left[ \tan^{- 1} \left( \infty \right) - \tan^{- 1} \left( \cot\alpha \right) \right]\]

\[ = \frac{\pi}{sin\alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left( \tan\left( \frac{\pi}{2} - \alpha \right) \right) \right]\]

\[ = \frac{\pi\alpha}{sin\alpha}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 16 | पृष्ठ ९५

संबंधित प्रश्‍न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

If n > 0, then Γ(n) is


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×