Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[ I = \int_0^\pi \frac{x}{1 + \cos\alpha \sin x} d x . . . . . \left( 1 \right)\]
\[ = \int_0^\pi \frac{\pi - x}{1 + \cos\alpha \sin\left( \pi - x \right)}dx\]
\[ = \int_0^\pi \frac{\pi - x}{1 + \cos\alpha \sin x}dx . . . . . \left( 2 \right)\]
\[\text{Adding} \left( 1 \right) and \left( 2 \right) \text{we get}, \]
\[2I = \int_0^\pi \frac{x + \pi - x}{1 + \cos\alpha \sin x} d x\]
\[ \Rightarrow I = \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha\ sinx} dx\]
\[= \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha sinx}\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{1}{1 + \cos\alpha \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\cos\alpha \tan \frac{x}{2}}dx\]
\[ = \frac{\pi}{2} \int_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\cos\alpha \tan \frac{x}{2}}dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 x dx = dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \pi; t \to \infty \]
\[ \therefore I = \frac{\pi}{2} \int_0^\infty \frac{2}{1 + t^2 + 2\cos\alpha t}dt\]
\[ = \frac{\pi}{2} \int_0^\infty \frac{2}{\left( t + \cos\alpha \right)^2 - \cos^2 \alpha + 1}dt\]
\[ = \pi \int_0^\infty \frac{1}{\left( t + \cos\alpha \right)^2 + \sin^2 \alpha}dt\]
\[ = \pi \left[ \frac{1}{\sin \alpha} \tan^{- 1} \left( \frac{t + \cos \alpha}{\sin \alpha} \right) \right]_0^1 \]
\[ = \frac{\pi}{sin\alpha}\left[ \tan^{- 1} \left( \infty \right) - \tan^{- 1} \left( \cot\alpha \right) \right]\]
\[ = \frac{\pi}{sin\alpha}\left[ \frac{\pi}{2} - \tan^{- 1} \left( \tan\left( \frac{\pi}{2} - \alpha \right) \right) \right]\]
\[ = \frac{\pi\alpha}{sin\alpha}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
Evaluate :
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Find: `int logx/(1 + log x)^2 dx`