Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I} =\int_{- 1}^1 \left| xcos\pi x \right|dx\]
Consider
\[f\left( - x \right) = \left| \left( - x \right)cos\pi\left( - x \right) \right| = \left| - xcos\pi x \right| = \left| xcos\pi x \right| = f\left( x \right)\]
\[\therefore I = \int_{- 1}^1 \left| xcos\pi x \right|dx\]
\[ = 2 \int_0^1 \left| xcos\pi x \right|dx ...............\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
Now,
\[\left| xcos\pi x \right| = \begin{cases}xcos\pi x, & \text{if }0 \leq x \leq \frac{1}{2} \\ - xcos\pi x, & \text{if }\frac{1}{2} < x \leq 1\end{cases}\]
\[\therefore I = 2\left[ \int_0^\frac{1}{2} xcos\pi xdx + \int_\frac{1}{2}^1 \left( - xcos\pi x \right)dx \right]\]
\[ = \left.2\left[ x \frac{sin\pi x}{\pi}\right|_0^\frac{1}{2} -\left. \frac{1}{\pi} \int_0^\frac{1}{2} sin\pi xdx \right] - 2\left[ x \frac{sin\pi x}{\pi}\right|_\frac{1}{2}^1 - \frac{1}{\pi} \int_\frac{1}{2}^1 sin\pi xdx \right]\]
\[ = 2\left( \frac{1}{2\pi}\sin\frac{\pi}{2} - 0 \right) - \left.\frac{2}{\pi} \times \left( - \frac{cos\pi x}{\pi} \right)\right|_0^\frac{1}{2} - \left.2\left( \frac{1}{\pi}sin\pi - \frac{1}{2\pi}\sin\frac{\pi}{2} \right) + \frac{2}{\pi} \times \left( - \frac{cos\pi x}{\pi} \right)\right|_\frac{1}{2}^1 \]
\[ = \frac{1}{\pi} + \frac{2}{\pi^2}\left( \cos\frac{\pi}{2} - \cos0 \right) + \frac{1}{\pi} - \frac{2}{\pi^2}\left( cos\pi - \cos\frac{\pi}{2} \right)\]
\[ = \frac{1}{\pi} - \frac{2}{\pi^2} + \frac{1}{\pi} + \frac{2}{\pi^2}\]
\[ = \frac{2}{\pi}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`