मराठी

∫ π 2 0 √ Cos X − Cos 3 X ( Sec 2 X − 1 ) Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]
बेरीज

उत्तर

\[\text{Let I }=\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[= \int_0^\frac{\pi}{2} \sqrt{\cos x\left( 1 - \cos^2 x \right)}\left( - \tan^2 x \right) \cos^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x\left( \sin^2 x \right)} \sin^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x}\left| \sin x \right| \sin^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x}\left( 1 - \cos^2 x \right)\sin\ x\ dx ...................\left( \left| \sin x \right| = \sin x for 0 \leq x \leq \frac{\pi}{2} \right)\]

Put `cos x = z^2`

\[\therefore - \sin\ x\ dx = 2zdz\]

When

\[x \to 0, z \to 1\]

When

\[x \to \frac{\pi}{2}, z \to 0\]

\[\therefore I = - \int_1^0 z\left( 1 - z^4 \right)2zdz\]
\[ = - 2 \int_1^0 z^2 dz + 2 \int_1^0 z^6 dz\]
\[ = \left.- 2 \times \frac{z^3}{3}\right|_1^0 + \left.2 \times \frac{z^7}{7}\right|_1^0 \]
\[ = - \frac{2}{3}\left( 0 - 1 \right) + \frac{2}{7}\left( 0 - 1 \right)\]
\[ = \frac{2}{3} - \frac{2}{7}\]
\[ = \frac{8}{21}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 61 | पृष्ठ ४०

संबंधित प्रश्‍न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


`int_0^(2a)f(x)dx`


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

If n > 0, then Γ(n) is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×