Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }=\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x\left( \sin^2 x \right)} \sin^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x}\left| \sin x \right| \sin^2 xdx\]
\[ = - \int_0^\frac{\pi}{2} \sqrt{\cos x}\left( 1 - \cos^2 x \right)\sin\ x\ dx ...................\left( \left| \sin x \right| = \sin x for 0 \leq x \leq \frac{\pi}{2} \right)\]
Put `cos x = z^2`
\[\therefore - \sin\ x\ dx = 2zdz\]
When
When
\[\therefore I = - \int_1^0 z\left( 1 - z^4 \right)2zdz\]
\[ = - 2 \int_1^0 z^2 dz + 2 \int_1^0 z^6 dz\]
\[ = \left.- 2 \times \frac{z^3}{3}\right|_1^0 + \left.2 \times \frac{z^7}{7}\right|_1^0 \]
\[ = - \frac{2}{3}\left( 0 - 1 \right) + \frac{2}{7}\left( 0 - 1 \right)\]
\[ = \frac{2}{3} - \frac{2}{7}\]
\[ = \frac{8}{21}\]
APPEARS IN
संबंधित प्रश्न
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`