मराठी

Π / 2 ∫ 0 1 5 Cos X + 3 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{5 \cos x + 3 \sin x} d\ x . Then, \]
\[I = \int_0^\frac{\pi}{2} \frac{1}{5\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + 3\left( \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)} d\ x \left[ \because \sin A = \left( \frac{2 \tan \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} \right), \cos A = \left( \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} \right) \right]\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{5 - 5 \tan^2 \frac{x}{2} + 6 \tan \frac{x}{2}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{5 - 5 \tan^2 \frac{x}{2} + 6 \tan \frac{x}{2}} dx\]
\[Let \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[Also, x = 0, t = 0 and x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 \frac{2dt}{5 - 5 t^2 + 6t}\]
\[ \Rightarrow I = \frac{1}{5} \int_0^1 \frac{2dt}{1 - t^2 + \frac{6}{5}t + \frac{36}{100} - \frac{36}{100}}\]
\[ = \frac{2}{5} \int_0^1 \frac{dt}{- \left( t - \frac{6}{10} \right)^2 + \frac{136}{100}}\]
\[ = \frac{2}{5} \times \frac{10}{\sqrt{136}} \left[ - \log \left( \frac{t - \frac{6}{10} - \frac{\sqrt{136}}{10}}{t - \frac{6}{10} + \frac{\sqrt{136}}{10}} \right) \right]_0^1 \]
\[ = \frac{1}{\sqrt{34}}\left[ - \log \left( \frac{4 - 2\sqrt{34}}{4 + 2\sqrt{34}} \right) + \log \left( \frac{- 6 - 2\sqrt{34}}{- 6 + 2\sqrt{34}} \right) \right]\]
\[ = \frac{1}{\sqrt{34}} \log \left( \frac{6 + 2\sqrt{34}}{6 - 2\sqrt{34}} \times \frac{4 + 2\sqrt{34}}{4 - 2\sqrt{34}} \right)\]
\[ = \frac{1}{\sqrt{34}} \log \left( \frac{160 + 20\sqrt{34}}{160 - 20\sqrt{34}} \right)\]
\[ = \frac{1}{\sqrt{34}} \log \left( \frac{8 + \sqrt{34}}{8 - \sqrt{34}} \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 4 | पृष्ठ ३८

संबंधित प्रश्‍न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

Γ(4)


Choose the correct alternative:

Γ(n) is


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×