Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{5 \cos x + 3 \sin x} d\ x . Then, \]
\[I = \int_0^\frac{\pi}{2} \frac{1}{5\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + 3\left( \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)} d\ x \left[ \because \sin A = \left( \frac{2 \tan \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} \right), \cos A = \left( \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} \right) \right]\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{5 - 5 \tan^2 \frac{x}{2} + 6 \tan \frac{x}{2}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{5 - 5 \tan^2 \frac{x}{2} + 6 \tan \frac{x}{2}} dx\]
\[Let \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[Also, x = 0, t = 0 and x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 \frac{2dt}{5 - 5 t^2 + 6t}\]
\[ \Rightarrow I = \frac{1}{5} \int_0^1 \frac{2dt}{1 - t^2 + \frac{6}{5}t + \frac{36}{100} - \frac{36}{100}}\]
\[ = \frac{2}{5} \int_0^1 \frac{dt}{- \left( t - \frac{6}{10} \right)^2 + \frac{136}{100}}\]
\[ = \frac{2}{5} \times \frac{10}{\sqrt{136}} \left[ - \log \left( \frac{t - \frac{6}{10} - \frac{\sqrt{136}}{10}}{t - \frac{6}{10} + \frac{\sqrt{136}}{10}} \right) \right]_0^1 \]
\[ = \frac{1}{\sqrt{34}}\left[ - \log \left( \frac{4 - 2\sqrt{34}}{4 + 2\sqrt{34}} \right) + \log \left( \frac{- 6 - 2\sqrt{34}}{- 6 + 2\sqrt{34}} \right) \right]\]
\[ = \frac{1}{\sqrt{34}} \log \left( \frac{6 + 2\sqrt{34}}{6 - 2\sqrt{34}} \times \frac{4 + 2\sqrt{34}}{4 - 2\sqrt{34}} \right)\]
\[ = \frac{1}{\sqrt{34}} \log \left( \frac{160 + 20\sqrt{34}}{160 - 20\sqrt{34}} \right)\]
\[ = \frac{1}{\sqrt{34}} \log \left( \frac{8 + \sqrt{34}}{8 - \sqrt{34}} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
Γ(1) is
Choose the correct alternative:
If n > 0, then Γ(n) is
The value of `int_2^3 x/(x^2 + 1)`dx is ______.