हिंदी

Π ∫ 0 √ 1 − X 1 + X D X =π 2,π 2 − 1,π 2 + 1, π + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`

विकल्प

  • \[\frac{\pi}{2}\]
  • \[\frac{\pi}{2} - 1\]

  • \[\frac{\pi}{2} + 1\]
  •  π + 1

  • None of these

MCQ

उत्तर

 None of the given option is correct.

\[\text{We have}, \]

\[I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} d x\]

`int_0^1 sqrt((1 - "x")/(1 + "x") xx (1 - "x")/(1 - "x"))   "dx"`

\[ = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}}dx\]

\[ = \int_0^1 \frac{1}{\sqrt{1 - x^2}}dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}}dx\]

`=> int_0^1 1/sqrt(1 - "x"^2)  "dx" - int_0^1 "x"/sqrt(1 - "x"^2)`dx     ......`[int 1/(sqrt ("a"^2 - "x"^2)) "dx" = "sin"^-1 "x"/"a" + "C"]`

`= > ["sin"^-1 "x"/1]_0^1 + int_1^0 1/sqrt"t"  "dt"/2`

`=> [sin^-1 (1) - sin^-1(0)] + 1/2 int_1^0 "t"^(-1/2)`dt

 `=> pi/2 - 0 + 1/2 [2"t"^(1/2)]_0^1`

`=> pi/2 + (1 - "x"^2)^(1/2)int_0^1`

`=> pi/2 + [(1 - 1)^(1/2) - (1 - 0)^(1/2)]`

`=> pi/2 - 1^(1/2)`

`=> (pi/2 - 1)`

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 10 | पृष्ठ ११७

संबंधित प्रश्न

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×