Advertisements
Advertisements
प्रश्न
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
विकल्प
- \[\frac{\pi}{2}\]
\[\frac{\pi}{2} - 1\]
- \[\frac{\pi}{2} + 1\]
π + 1
None of these
उत्तर
None of the given option is correct.
\[\text{We have}, \]
\[I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} d x\]
`int_0^1 sqrt((1 - "x")/(1 + "x") xx (1 - "x")/(1 - "x")) "dx"`
\[ = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}}dx\]
\[ = \int_0^1 \frac{1}{\sqrt{1 - x^2}}dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}}dx\]
`=> int_0^1 1/sqrt(1 - "x"^2) "dx" - int_0^1 "x"/sqrt(1 - "x"^2)`dx ......`[int 1/(sqrt ("a"^2 - "x"^2)) "dx" = "sin"^-1 "x"/"a" + "C"]`
`= > ["sin"^-1 "x"/1]_0^1 + int_1^0 1/sqrt"t" "dt"/2`
`=> [sin^-1 (1) - sin^-1(0)] + 1/2 int_1^0 "t"^(-1/2)`dt
`=> pi/2 - 0 + 1/2 [2"t"^(1/2)]_0^1`
`=> pi/2 + (1 - "x"^2)^(1/2)int_0^1`
`=> pi/2 + [(1 - 1)^(1/2) - (1 - 0)^(1/2)]`
`=> pi/2 - 1^(1/2)`
`=> (pi/2 - 1)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.